Network operators often need to ensure that important probabilistic properties are met, such as that the probability of network congestion is below a certain threshold. Ensuring such properties is challenging and requires both a suitable language for probabilistic networks and an automated procedure for answering probabilistic inference queries.
We present Bayonet, a novel approach that consists of: (i) a probabilistic network programming language and (ii) a system that performs probabilistic inference on Bayonet programs. The key insight behind Bayonet is to phrase the problem of probabilistic network reasoning as inference in existing probabilistic languages. As a result, Bayonet directly leverages existing probabilistic inference systems and offers a flexible and expressive interface to operators.
We present a detailed evaluation of Bayonet on common network scenarios, such as network congestion, reliability of packet delivery, and others. Our results indicate that Bayonet can express such practical scenarios and answer queries for realistic topology sizes (with up to 30 nodes).
Fri 22 JunDisplayed time zone: Eastern Time (US & Canada) change
11:00 - 12:15 | Inference for Probabilistic ProgramsPLDI Research Papers at Grand Ballroom CD Chair(s): Arjun Guha University of Massachusetts, Amherst | ||
11:00 25mTalk | Incremental Inference for Probabilistic Programs PLDI Research Papers Marco Cusumano-Towner MIT-CSAIL, Benjamin Bichsel ETH Zurich, Switzerland, Timon Gehr , Martin Vechev ETH Zürich, Vikash K. Mansinghka MIT Media Attached | ||
11:25 25mTalk | Bayonet: Probabilistic Inference for Networks PLDI Research Papers Timon Gehr , Sasa Misailovic University of Illinois at Urbana-Champaign, USA, Petar Tsankov ETH Zurich, Laurent Vanbever ETH Zürich, Pascal Wiesmann ETH Zurich, Switzerland, Martin Vechev ETH Zürich Media Attached | ||
11:50 25mTalk | Probabilistic Programming with Programmable Inference PLDI Research Papers Vikash K. Mansinghka MIT, Ulrich Schaechtle Massachusetts Institute of Technology, USA, Shivam Handa , Alexey Radul , Yutian Chen Google Deepmind, n.n., Martin C. Rinard Massachusetts Institute of Technology Media Attached |