Probabilistic modeling and inference problems are often computationally intractable, so practitioners frequently design custom approximation algorithms for the problem at hand. However, current probabilistic programming languages typically provide only a small set of black-box inference algorithms that cannot be customized. This limitation renders most probabilistic programming languages unsuitable for most applications of probabilistic modeling and inference. This paper introduces novel inference meta-programming constructs for expressing custom inference algorithms in probabilistic programming languages. These constructs enable probabilistic programmers to (i) dynamically decompose inference problems into subproblems; (ii) apply inference tactics to subproblems; (iii) alternate between incorporating new data and performing inference given existing data; and (iv) explore multiple execution traces of the probabilistic program at once. Together, these inference meta-programming constructs allow probabilistic programmers to express a broad class of algorithms, including novel hybrids of gradient-based search, combinatorial search, Markov chain Monte Carlo, sequential Monte Carlo, and variational inference. Experimental results on a collection of probabilistic programs, written in the Venture probabilistic programming language, highlight the significant performance and accuracy benefits that programmable inference can deliver.
Fri 22 JunDisplayed time zone: Eastern Time (US & Canada) change
11:00 - 12:15 | Inference for Probabilistic ProgramsPLDI Research Papers at Grand Ballroom CD Chair(s): Arjun Guha University of Massachusetts, Amherst | ||
11:00 25mTalk | Incremental Inference for Probabilistic Programs PLDI Research Papers Marco Cusumano-Towner MIT-CSAIL, Benjamin Bichsel ETH Zurich, Switzerland, Timon Gehr , Martin Vechev ETH Zürich, Vikash K. Mansinghka MIT Media Attached | ||
11:25 25mTalk | Bayonet: Probabilistic Inference for Networks PLDI Research Papers Timon Gehr , Sasa Misailovic University of Illinois at Urbana-Champaign, USA, Petar Tsankov ETH Zurich, Laurent Vanbever ETH Zürich, Pascal Wiesmann ETH Zurich, Switzerland, Martin Vechev ETH Zürich Media Attached | ||
11:50 25mTalk | Probabilistic Programming with Programmable Inference PLDI Research Papers Vikash K. Mansinghka MIT, Ulrich Schaechtle Massachusetts Institute of Technology, USA, Shivam Handa , Alexey Radul , Yutian Chen Google Deepmind, n.n., Martin C. Rinard Massachusetts Institute of Technology Media Attached |